2,062 research outputs found

    Absorption, refraction and scattering retrieval with an edge-illumination-based imaging setup

    Get PDF
    We have recently developed a new method based on edge-illumination for retrieving a three-image representation of the sample. A minimum of three intensity projections are required in order to retrieve the transmission, refraction and ultra-small-angle scattering properties of the sample. Here we show how the method can be adapted for particular cases in which some degree of a priori information about the sample might be available, limiting the number of required projections to two. Moreover, an iterative algorithm to correct for non-ideal optical elements is proposed and tested on numerical simulations, and finally validated on experimental data

    Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    Get PDF
    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal

    Edge-illumination X-ray dark-field imaging for visualising defects in composite structures

    Get PDF
    Low velocity impact can lead to barely visible and difficult to detect damage such as fibre and matrix breakage or delaminations in composite structures. Drop-weight impact damage in a cross-ply carbon fibre laminate plate was characterized using ultrasonic C-scan measurements. This was compared to the results provided by a novel X-ray imaging technique based on the detection of phase effects, which can be implemented with conventional equipment. Three representations of the sample are provided: absorption, differential phase and dark-field. The latter is of particular interest to detect cracks and voids of dimensions that are smaller than the spatial resolution of the imaging system. The ultrasonic C-scan showed a large delamination and additional damage along the fibre directions. The damage along the fibre directions and other small scale defects were detected from the X-ray imaging. As the system is sensitive to phase effects along one direction at a time, the acquisition of an additional scan, rotating the sample 90 degrees around the beam axis, provides information in both fibre directions. These two techniques enable access to a set of complementary information, across different length scales, which can be useful in the characterization of the defects occurring in composite structures

    Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography

    Get PDF
    Edge illumination (EI) x-ray phase contrast computed tomography (CT) can provide three-dimensional distributions of the real and imaginary parts of the complex refractive index (n = 1 d + ib) of the sample. Phase retrieval, i.e. the separation of attenuation and refraction data from projections that contain a combination of both, is a key step in the image reconstruction process. In EI-based x-ray phase contrast CT, this is conventionally performed on the basis of two projections acquired in opposite illumination configurations (i.e. with different positions of the pre-sample mask) at each CT angle. Displacing the pre-sample mask at each projection makes the scan susceptible to motor-induced misalignment and prevents a continuous sample rotation. We present an alternative method for the retrieval of attenuation and refraction data that does not require repositioning the pre-sample mask. The method is based on the reverse projection relation published by Zhu et al. (2010) for grating interferometry-based x-ray phase contrast CT. We use this relation to derive a simplified acquisition strategy that allows acquiring data with a continuous sample rotation, which can reduce scan time when combined with a fast read-out detector. Besides discussing the theory and the necessary alignment of the experimental setup, we present tomograms obtained with reverse projection retrieval and demonstrate their agreement with those obtained with the conventional EI retrieval

    Improved visualization of X-ray phase contrast volumetric data through artifact-free integrated differential images

    Get PDF
    Artifacts arising when differential phase images are integrated is a common problem to several X-ray phase-based experimental techniques. The combination of noise and insufficient sampling of the high-frequency differential phase signal leads to the formation of streak artifacts in the projections, translating into poor image quality in the tomography slices. In this work, we apply a non-iterative integration algorithm proven to reduce streak artifacts in planar (2D) images to a differential phase tomography scan. We report on how the reduction of streak artifacts in the projections improves the quality of the tomography slices, especially in the directions different from the reconstruction plane. Importantly, the method is compatible with large tomography datasets in terms of computation time

    A partial-dithering strategy for edge-illumination X-ray phase-contrast tomography enabled by a joint reconstruction method

    Get PDF
    Edge-illumination X-ray phase-contrast tomography (EIXPCT) is a promising imaging technology where partially opaque masks are utilized with laboratory-based X-ray sources to estimate the distribution of the complex-valued refractive index. EIXPCT resolution is mainly determined by the period of a sample mask, but can be significantly improved by a dithering technique. Here, dithering means that multiple images per tomographic view angle are acquired as the object is moved over sub-pixel distances. Drawbacks of dithering include increased data-acquisition times and radiation doses. Motivated by the flexibility in data-acquisition designs enabled by a recently developed joint reconstruction (JR) method, a novel partial-dithering strategy for EIXPCT data-acquisition is proposed. In this strategy, dithering is implemented at only a subset of the tomographic view angles. The strategy can result in spatial resolution comparable to that of the conventional full-dithering strategy, where dithering is performed at every view angle, but the acquisition time is substantially decreased. Here, the effect of dithering parameters on image resolution are explored

    Detection of individual sub-pixel features in Edge-Illumination X-Ray Phase Contrast Imaging by means of the dark-field channel

    Get PDF
    We report on a direct comparison in the detectability of individual sub-pixel-size features between the three complementary contrast channels provided by edge-illumination x-ray phase contrast imaging at constant exposure time and spatial sampling pitch. The dark-field (or ultra-small-angle x-ray scattering) image is known to provide information on sample micro-structure at length scales that are smaller than the system's spatial resolution, averaged over its length. By using a custom-built groove sample, we show how this can also be exploited to detect individual, isolated features. While these are highlighted in the dark-field image, they remain invisible to the phase and attenuation contrast channels. Finally, we show images of a memory SD card as an indication towards potential applications

    The Intertwined Successional Development of the Lamb Gut Microbiota And Immune System (Poster)

    Get PDF
    Gastrointestinal tract (GIT) microbes play critical roles in host nutrition, health and immunological development. For adult ruminants, GIT-dwelling microbes provide ~70% of daily energy requirements. The GIT also houses 70 % of the animal’s immune system in the form of the Gut-associated Lymphatic Tissue (GALT), which houses 80% of all plasma cells and depends on microbial stimulation for maturation. Because nutrition and disease are two major factors in the economic sustainability of livestock production, our group set out to characterize the successional development of GIT microbiota and immune activity. Blood and GIT samples were collected from lambs immediately at birth through one-year of age, and from the dam’s vagina, mouth, and rectum at parturition. Blood samples were profiled for serum titers of IgM, IgA and IgG, while microbiota were profiled in GIT samples by 16S rRNA gene sequencing. Lamb GIT microbiota initially resembled the dam’s vaginal microbiota but following exposure to the dam, became rapidly more similar to the dam’s teat. GIT samples eventually formed stable climax communities similar to the dams around 180 days of age. This corresponded to the peak serum titers for each immunoglobin, which, aside from a peak in IgG at birth (likely colostral transfer), had gradually increased prior to this time. Immunoglobins peaked and then return to a sub peak level between 180 and 365 days. These results indicate dam vaginal microbiota have a short-lived impact on the neonatal microbiota, with the GIT microbiota going through a dynamic successional development to 180 d when immune function appears to peak

    Asymmetric masks for large field-of-view and high-energy X-ray phase contrast imaging

    Get PDF
    We report on a large field of view, laboratory-based X-ray phase-contrast imaging setup. The method is based upon the asymmetric mask design that enables the retrieval of the absorption, refraction and scattering properties of the sample without the need to move any component of the imaging system. This can be thought of as a periodic repetition of a group of three (or more) apertures arranged in such a way that each laminar beam, defined by the apertures, produces a different illumination level when analysed with a standard periodic set of apertures. The sample is scanned through the imaging system, also removing possible aliasing problems that might arise from partial sample illumination when using the edge illumination technique. This approach preserves the incoherence and achromatic properties of edge illumination, removes the problems related to aliasing and it naturally adapts to those situations in clinical, industrial and security imaging where the image is acquired by scanning the sample relative to the imaging system. These concepts were implemented for a large field-of-view set of masks (20 cm × 1.5 cm and 15 cm × 1.2 cm), designed to work with a tungsten anode X-ray source operated up to 80–100 kVp, from which preliminary experimental results are presented
    • …
    corecore